Uncertainty in Terrestrial Laser Scanner Surveys of Landslides

نویسندگان

  • Maurizio Barbarella
  • Margherita Fiani
  • Andrea Lugli
چکیده

Terrestrial laser scanning (TLS) is a relatively new, versatile, and efficient technology for landslide monitoring. The evaluation of uncertainty of the surveyed data is not trivial because the final accuracy of the point position is unknown. An a priori evaluation of the accuracy of the observed points can be made based on both the footprint size and of the resolution, as well as in terms of effective instantaneous field of view (EIFOV). Such evaluations are surely helpful for a good survey design, but the further operations, such as cloud co-registration, georeferencing and editing, digital elevation model (DEM) creation, and so on, cause uncertainty which is difficult to evaluate. An assessment of the quality of the survey can be made evaluating the goodness of fit between the georeferenced point cloud and the terrain model built using it. In this article, we have considered a typical survey of a landsliding slope. We have presented an a priori quantitative assessment and we eventually analyzed how good the comparison is of the computed point cloud to the actual ground points. We have used the method of cross-validation to eventually suggest the use of a robust parameter for estimating the reliability of the fitting procedure. This statistic can be considered for comparing methods and parameters used to interpolate the DEM. Using kriging allows one to account for the spatial distribution of the data (including the typical anisotropy of the survey of a slope) and to obtain a map of the uncertainties over the height of the grid nodes. This map can be used to compute the estimated error over the DEM-derived quantities, and also represents an “objective” definition of the area of the survey that can be trusted for further use.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms

acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...

متن کامل

Earthquake Deformation Analysis Using Terrestrial Scanning Laser - Lidar Technology

Earthquakes leave in their wake permanently deformed ground. These deformations take on extremely complex surfaces and shapes. A new technology, 3-D laser-scanning Light Detection And Ranging (LIDAR), allows for the rapid and remote sensing of damaged terrain to construct ultra-high resolution 3-D models of the ground. Scanning LIDAR targets the damaged area with sequenced LASER pulses that, in...

متن کامل

A novel method for locating the local terrestrial laser scans in a global aerial point cloud

In addition to the heterogeneity of aerial and terrestrial views, the small scale terrestrial point clouds are hardly comparable with large scale and overhead aerial point clouds. A hierarchical method is proposed for automatic locating of terrestrial scans in aerial point cloud. The proposed method begins with detecting the candidate positions for the deployment of the terrestrial laser scanne...

متن کامل

Occlusion Area as Suitable Guidance for Terrestrial Laser Scanner Localization

Terrestrial Laser Scanner (TLS) technology, have altered quickly data acquisition for map production in surveying. In many cases, it is impossible to complete surveying of the desired area without TLS displacement in one station to another. Occlusion is innate in data acquisition, with this type of device. To solve this problem, TLS devices should be placed in different locations and scanning o...

متن کامل

Landslide Monitoring Using Terrestrial Laser Scanner: Georeferencing and Canopy Filtering Issues in a Case Study

In order to define a methodology that faces the major critical issues, we used a Terrestrial Laser Scanner to monitor a large landslide that caused significant disruptions both to an important state road and to a major railway line in Italy. To survey the landslide we used three different models of Terrestrial Laser Scanners, including a "full wave form" one, potentially useful for filtering ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017